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SYNOPSIS  

The paper explores the role of vertical connections in the seismic 
response of composite walls used in large panel precast concrete build-
ings. On the basis of this examination a strong horizontal joint, weak 
vertical joint aseismic design philosophy is suggested. 

The shear medium theory or continuous medium method is briefly 
reviewed as it applies to the coupling phenomenon in precast walls. 
A simple explicit formula for the fundamental period of composite 
precast walls and coupled shear walls is presented. 

With the linear elastic characteristics as a basis, the effect of 
vertical connection stiffness, strength and cyclic degradation on the 
inelastic seismic behavior of composite precast walls is discussed. 
This discussion along with the proposed design philosophy is illustra-
ted with a series of computer results. These results indicate that 
if vertical connections can be developed that exhibit a stable elasto-
plastic hysteretic behavior, the walls and the vulnerable horizontal 
connections can be efficiently protected by deliberately designing weak 
vertical joints. With the actual behavior of presently used connections 
in mind, the need for the development of new vertical joints is pointed 
out and some promising approaches are mentioned. 

RESUME 

Cette communication explore le rale des joints verticaux lots 
du calcul sismique des panneaux prefabriques en beton. Une philo-
sophic de base est done suggeree na les joints horizontaux possedent 
une resistance adequate mais les joints verticaux sont deliberemment 
faibles. 

A partir des caracteristiques lineaires et elastiques, l'effet 
vertical des joints du point de vue rigidite, resistance, degradaticn 
cyclique est Etudiee afin de connaltre le comportement non-lineaire 
des murs prifabriquis. Cette discussion basee sur la philosophic 
de design est illustree a l'aide de plusieurs resultats numeriques. 
Les resultats demontrent que si le joint vertical est capable d'assumer 
un comportement elasto-plastique stable, les murs et les joints hori-
zontaux, qui sont plus vulnerables, peuvent itre protégés d'une facon 
adequate a la condition de rendre les joints verticaux faibles. 
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INTRODUCTION 

4 
The extended use of large panel precast concrete buildings (see 

Fig. 1) in many of the seismic regions of the world, raises new ques- 
tions in aseismic design. These questions center mainly around the 
connections used in panelized buildings (see Fig. 2) (1,2). The 
design of the connection details involves the balancing of economics 
and ease of construction on the one hand with the need of creating 
continuity on the other. This results normally in a system, in which 
the connections represent the weakest structural element with respect 
to both stiffness and strength. Connections are therefore not merely 
secondary elements that can be designed on the basis of an overall 
structural analysis, rather they represent one of the major factors 
governing the overall seismic response of the structure. 

This paper explores the role of vertical connections in aseismic 
design of panelized walls that have been joined together to form com-
posite walls with planar, I, U, T or box-type sections (see Fig. 3). 
The behavior of horizontal joints has been investigated elsewhere 
(3,4) and is treated only when relevant in the present context. 

In non-seismic regions the tendency has been to design vertical 
joints capable of developing the full monolithic strength of composite 
walls. Typical of this approach are the preliminary recommendations 
by Hansen, et al (5) for an 'elastic limit' design for composite walls. 
In aseismic design situations the problem of vertical joint design 
should be viewed from a different perspective. Under severe earthquake 
excitation inelastic action will in all likehood occur and most proba-
bly it will occur in the critical connection regions. Directing the 
primary inelastic action to structural elements which exhibit favorable 
hysteretic behavior and do not threaten the overall stability when degra-
ding then becomes a major aseismic design issue. In this manner, the 
vertical connection may represent an important opportunity in the aseis-
mic design of large panel buildings and it is to this idea that the 
remainder of this paper is addressed. 

• 
• 
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ELASTIC DYNAMIC PROPERTIES OF COMPOSITE PRECAST WALLS 

The basis for the understanding of the inelastic behavior of a 
structure requires a thorough knowledge of the main characteristics 
and governing parameters of its elastic response. The shear medium 
theory provides such a basis for understanding the response of panel-
ized walls coupled through vertical connections and is shortly re-
viewed. As a by-product, a relatively simple explicit expression for 
the fundamental period of composite walls is presented. 

Shear Medium Theory  

The shear medium theory has been widely used in the area of cou-
pled shear walls and shear wall buildings. It allows not only a 
straightforward analysis of the overall response of the classical case 
of two shear walls coupled by coupling girders, but has also been suc-
cessfully used in computer programs for complex shear wall buildings 
to reduce the number of degrees of freedom involved. The equations 
for two or three symmetrically coupled shear walls are essentially gov-
erned by only two parameters. These parameters represent therefore an 
ideal criterion to classify coupled shear walls. The contributions to 
the subject in the literature are numerous for both the static (6,7,8, 
9,10,11,12) as well as for the dynamic (13,14,15,16,17,18) cases. 

The theory is equally applicable to precast concrete panel build-
ings with vertical joints and in reality more accurate. For grouted 
vertical joints the basic simplification of the theory, the replacement 
of the discrete coupling girders by a continuous shear medium, is exact. 
For connections with discrete mechanical connectors the error involved 
is smaller, because the spacing of the connectors.is closer than that 
of the coupling girders. Moreover the problems with the flexible en-
casement of the coupling girders vanish. The theory is particularly 
simple for structures with constant cross-sectional properties and con-
stant coupling stiffness. This is usually the case in panelized build-
ings and will be assumed throughout the paper. 

For the derivation of the differential equation the reader is re-
ferred to the above cited literature. To establish the basis for the 
remainder of the paper, the governing parameters and the differential 
equation are simply restated in a form suited for panelized buildings. 
The basic case of two unequal coupled walls shown in Fig. 4 covers a 
great part of the other configurations found in lateral force resisting 
elements of panelized buildings: three coplanar, symmetrically coupled 
walls and composite walls with symmetric U, T or double-symmetric box-
type shapes. 

The basic assumptions for the shear medium theory are: 

Discrete coupling elements are evenly smeared over the joint 
length. 

The lateral deflections of the individual walls are equal. 

For the individual walls classical beam theory holds, in par-
ticular the assumption that plane cross-sections remain plane. 
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The second assumption is somewhat doubtful for two unequal planar cou-
pled walls, particularly if the relatively flexible mechanical connec-
tors are used. It is surely accurate for the case of flange walls 
coupled with web walls (Fig. 3d). With the notation and conventions 
given in Fig. 4 the differential equation for the shear flow q is 

q" - a2c, = - a2qm 

a2 = 

5
kc2H2  

EI0  

Y = 1 - To /I.  

where primes denote derivatives with respect to the dimensionless coor-
dinate E = x/H. It is significant to note that Eqs.(1) and (2) and all 
definitions given below apply equally to both the two-wall configura-
tions shown in Fig. 3a and b and the symmetric three-wall configura-
tions (Fig. 3c and d), if in the latter cases k, q and qv  denote the 
sum of the stiffness, shear flow and yield strength of the (equal) 
connections. 

The term c denotes the distance between the centers of gravity of 
the walls adjoining a connection. 10  is the sum of the moments of 
inertia of the individual walls, Io= EIi, i.e., the effective moment 
of inertia of the uncoupled, but equally deflecting walls (k = 0). 
is the moment of inertia of the rigidly coupled walls acting as one 
integral beam (k = 00, plane sections remain plane). The shear flow 
that would occur in the integral beam at the location of the connection 
is given by the well-known expression VQ/Im, where Q is the statical 
moment of the area separated by the connection with respect to the cen-
ter of gravity of the integral cross-section. But it can be easily 
shown that 

(3)  

where n is the number of connections. Hence, in agreement with the 
aforementioned conventions, the shear flow at the connection, or the 
sum of the shear flow at the connections, respectively, occurring in 
the integral beam can be generally written 

V 
=1-c- 

(4)  

Introducing Eq. (4) in Eq. (1) results in the form of the differential 
equation usually encountered in the literature 

(in _ az q  = _ ,Y_ = -R V_ (5) 
c 

Also, the Y parameter is usually defined in a form similar to 

I
0 A  _1 = 1 + , A = Al + A2 c2  A1 A2 

cQ 
Y = n-- 

(6) 
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However, this definition applies only to the two-wall configuration 
shown in Fig. 4. 

The form of Eq. (1) immediately shows that the stress distribution 
in the coupled walls is defined by the stress distribution according 
to integral beam theory and the parameter a. It is significant to note, 
that for a constant or linear shear force and hence shear flow, i.e., 
a cantilever with a point load at the top or a constant load distribu-
tion, the integral beam theory solution satisfies Eq. (1). Hence the 
differences between integral beam theory and shear medium theory re-
sult only from differently specified boundary conditions. This points 
to the possible importance of the actual boundary conditions. In the 
classical case of a fixed-end cantilever, the boundary conditions of 
zero slope at the bottom and zero moment and normal force at the top 
translate into 

q( = 0) = 0 (7a)  

q'(E = 1) = 0 (7b)  

Different boundary conditions are treated in the literature (7). 

Fig. 5 shows the shear flow distribution along a connection and 
the ratio, K (see Eq. (12b)), of the coupled and uncoupled top deflec-
tions as functions of the parameters a and y for a triangular load dis-
tribution. The curves are adapted from the work of Coull and Choud-
hury (9). 

The shear medium parameters being an ideal criterion for the clas-
sification of coupling problems independently of the actual method of 
analysis used, their meaning shall be shortly restated. Note that they 
are, contrary to other definitions in the literature, dimensionless. 

a2 • ls the relative coupling stiffness. Physically it can be inter-
preted as the ratio of the vertical relative displacement between the 
walls and between the two edges of a joint for unit forces acting on 
top of the walls and on the entire connection at the wall-connection 
interfaces (see Fig. 6). The overall stiffness and hence declections 
of a structure are very sensitive to a for low and nearly insensitive 
for high values of a (Fig. 5b). The latter is even more evident for 
the fundamental periods of coupled walls (see next section). For a tri-
angular and, hence, approximate seismic load distribution, the connec-
tion shear flow is relatively even in the sensitive, low a-value range, 
whereas it approaches the uneven distribution of an integral beam for 
high a values in the insensitive range. In the insensitive range the 
structure behaves nearly monolithic. Note that a is proportional to 
the height of a structure but only proportional to the square root of 
the connection stiffness. Thus the height of a building has a much 
stronger influence on the degree of coupling than the connection stiff-
ness itself. 

y is a measure of the relative difference in stiffness and deflec- 
tions between the uncoupled and the rigidly coupled systems (Eq. 2c). 
It thus defines the stiffness range over which the overall stiffness 
can be influenced by the selection of the connection stiffness. In view 
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of Eq. (6) it is often interpreted as representing the effect of the 
axial deformations of the individual walls. Neglecting axial deforma-
tions results in y = 1. However, the more general definition Eq. (2c) 
shows that such an approximation can never converge to the integral 
beam solution for a co and as shown by Fig. 5b the error involved may 
be large. 

Integration of equation (4) gives 

H 
T.  = f q.dx = 

Tic = yM (8) 

where T is the normal force in the walls due to coupling. Hence from 
the point of view of forces, y gives directly the fraction of the total 
overturning moment that is resisted by the axial couple in the rigidly 
coupled system (k = co). Surely then, when illustrating the effective-
ness of coupling of a system, the axial couple should be compared with 
this fraction of the overturning moment rather than with the total over-
turning moment. 

Finally then the parameter f3 is merely a convenient dummy parame- 
ter to calculate a with no physical meaning except that 13 = a2 for the 
unrealistic case y = 1. 

It remains to discuss the values of a and y found in panelized 
buildings. The estimated values refer only to coupling through verti-
cal connections. For coupling through coupling girders, lintels or 
floor slabs, the literature on coupled shear walls applies. 

Because in walls coupled by vertical joints the panels stand 
directly side by side, the distance between the centers of gravity is 
fixed and cannot be used to influence the degree of coupling. For the 
same reason the y values are generally lower than in shear walls coupled 
by coupling beams. For a U shape with equal sides, y = 0.5. For two 
coplanar coupled walls, for a box shape with equal sides or an I shape 
with a flange width of half the web depth, y = 0.75. 

The relative coupling stiffness a found in panelized buildings 
seems to cover the full range of coupling degrees. In the computer 
study reported below, a U-shaped composite wall of a ten-story building 
with dimensions usually found in large panel precast concrete building 
had a coupling stiffness a = 4. The value was derived assuming two 
studded mechanical connectors per story and using stiffness values in 
the range of reported test results. For a box-shape with similar dimen-
sions and door openings a = 5 was found. Because a is proportional to 
the height, a values of 2.0 and 2.5 for five-story and 6.0 and 7.5 for 
the fifteen-story building with the same cross-section and connection 
properties are indicated. 

For grouted reinforced keyed or plain joints, Hansen et al. (5) 
suggested a value of 300 kg/cm3  as a reasonable lower bound stiffness 

♦ ♦ 
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to be used in elastic limit design for normal stresses. Depending on 
the assumed effective joint width, the above a-values correspond approx-
imately to 90 - 130 kg/cm3. Hence, for the same building the estimated 
lower bound a-values for grouted joints are roughly higher by a factor 
173-  than for the investigated dry joints, i.e., in the order of magnitude 
of a = 4, 8 and 12 for the five, ten and fifteen story building, respec-
tively. Note however that values of up to 1500 kg/cm3  and more have 
been reported for the stiffness of grouted keyed joints. 

Fundamental Period of Composite Precast Walls  

It is well known that the shear medium theory leads to a 6th order 
differential equation of motion for coupled shear walls. A simple 
closed form expression for the fundamental period is therefore not 
likely. By setting y = 1, a2  = 3, a 4th order differential equation 
of motion results which is similar in form to the equation of motion 
of a bending beam under axial tension or to a bending beam coupled 
with a shear beam. However, in view of the low y values in panelized 
buildings, setting y = 1 results in significant errors. 

The problem has been solved in various ways. On the one hand the 
exact eigen value problem has been solved numerically for the fundamen-
tal period (14) as well as for the higher periods (15). Both studies 
treat the general case of unequal lateral deflections of the coupled 
walls and in the latter the vertical inertia forces are also included_ 
On the other hand, various approximate solutions based on energy methods 
have been reported (13, 16, 17). To the authors' knowledge, however, 
none has resulted in a relatively simple, explicit closed form expres-
sion. 

Such a solution shall shortly be presented. It is based on an 
energy method, more specifically, the improved Raleigh Method (18). In 
view of the fact that the expressions for the deflected shape of coupled 
shear walls are relatively complicated, a frequency expression is desir-
able in which the deflected shape is not squared. 

The intermediate frequency expression resulting from one Stodola-
Vianello iteration step satisfies this requirement. 

H 
I m z2  dx 

0 
2 0  

w
ol 

I
i
mz z dx 

o 1 
0 

In Eq. (9) m denotes the mass per unit length; z0  is the first assumed 
mode shape or inertia force distribution; z1  is the derived deflected 
shape for the distributed load p = m z0  and satisfies the governing dif-
ferential equation and all boundary conditions. 

Eq. (9) results from equating the maximum kinetic energy calcula- 
ted on the basis of the initial assumed shape with the maximum strain 
energy calculated with the derived shape. In the standard Raleigh 

(9) 
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(11a)  is given by 

(11b)  where 

7 
1111 = 2 (1 - Y) [ -11 

p = m z 

z
o 
= 1 - 

z i  = w = Z1  • 4)1 ( ) 

_ 11 2 me 
1  - 120 7 EI

o 

5 + 1] 

sinh a E cosh a - 420 1 + Y
1° 1 04 4  

sinh a-(2 - a)  
a" cosh a 

(12a)  

1)  
(12b)  
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frequency expression the assumed shape zo  must satisfy the geometric 
boundary conditions and certain continuity requirements. However, 
using Eq. (9), the requirements with respect to continuity and satis-
faction of geometric boundary conditions are less stringent (19). More 
specifically, for a simple cantilever beam a triangular zo  is also 
feasible. It can be mathematically shown that the resulting frequency 
is still an upper bound. For the simple cantilever beam with bending 
stiffness El, mass per unit length m and height H, the evaluation of 
Eq. (9) gives 

w 1/140 EI EI 
11 m--I-41 = 3'57  

for a triangular assumed shape zo. The constant 3.57 differs only by 
1.5% from the exact value (1.875)2  . 

However, the simple cantilever response is the limiting case for 
the coupled wall structures shown in Fig. 3 for both zero and infinite 
connection stiffness. Thus it may be expected that Eq. (9), together 
with a triangular assumed shape, will also give acceptable accuracy 
for the intermediate range of coupling stiffness. 

Referring again to Fig. 4 for notation and conventions, the deflec-
ted shape of a coupled shear wall for the triangular load distribution 

1 
- 717 (cosh a - tanh a (sinh a - Id)) 

+ a (1 - - a + - 3E2 + 3 - 1)] (11c) 

The terms a and y are defined by Eqs. (2). For the top deflection 
there results 

. 0, . 11 me 
1 120 EI 

0 
4 

120 1 1 
1 + sinh 

2 
 - 

K4 = 1 - Y Y  11 7 t3 a2  cosh a 

This expression may be readily verified in Ref. 9. 

t 
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Introducing Eqs. (10) and (11) in Eq. (9) and evaluating the 
numerator integral in the frequency expression, there results 

w2 = 
140 

EI
o 1 

11 MH K5 

where the integral 1 
K =

z0 1 
 dC 

5  
0 

has been named in a fashion similar to Ref. 9. The evaluation of the 
integral Eq. (14) is laborious and not reproduced here. The final re-
sult is 

E I 
w 

0 
3.57 = (15a)  

MH4K ' 5 

Ks 
 = (1  y) 4.y  1 

11 
56 105 tanh a 140 840 tanh 
"a-2- -  a3  a4 a5  

420 420 tanha 840 (a 
2 

1,, 
al  ' 

(15b)  
a7 as cosh a 

It may be easily seen that K5 1 - y = for a co. By writing 
the expression in the square bracket of Eq. 715b) as a fraction with 
denominator a7  cosh a and by taking the 5th derivative of both the 
nominator and the denominator, it can be shown that the value of the 
expression in the square bracket of Eq. (15b) tends to 11 and conse-
quently K5  -,- 1 for a 0. Hence, the formula is correct in the limits. 

Similar to the Kli-factor (Eq. (12b); Ref. (9)), which represents 
the ratio of the coupled and uncoupled top deflection, K5  represents 
the square of the ratio of the coupled and uncoupled fundamental peri- 
ods It is represented in Fig. 6, together with a visualization of 
the shear medium parameters a and y. 

Fig. 7 shows a comparison of the approximate frequencies of Eq. 
(15) with the frequencies reported in Ref. (14) resulting from the 
numerical solution of the eigenvalue problem associated with the 6th 
order differential equation of motion. The agreement is excellent, and 
the error of the approximate solution is evidently insignificant in view 
of the discrepancies between theory and test results. 

For two identical planar coupled walls or for a web wall coupled 
with flange walls, the effect of the wall shear deformations may be 
readily implemented in the approximate solution. In these cases the 
shear deformations do not influence the coupling phenomenon within the 
approximations of classical beam theory and result simply in an additive 
term in the expression for the derived deflected shape 

z1  = Z1(T1  + (pi
), (16) 

(13)  

(14)  
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where Z and IP are still given by Eqs.(11b)and(110, and Z14 de-
notes the shear deflections of a cantilever. From classical beam 
theory follows 

140  EI (3 1 1-31  
151  = 11 GA'H2  2 

Introducing Eq. (16) in the denominator integral of the frequency ex-
pression results in an additional term in the expression for K5 

K5  = K5 K5 (18a) 

56 EIo K5	 (18b) 
11 GA'H2  

where K; is still given by Eq. (15b). The interrelation between 
the sectional coupling degree and the shear deformation enters only 
in the value for the effective shear area A' and a reasonable mean 
value may be used. In Fig. 8 the approximate solution, Eqs. (15a) and 
(18), is compared with a frame analogy result reported in Ref. (20). 
The shear influence in the K5-factor was 6%. 

The approximate solution just presented allows an easy determina-
tion of the fundamental period of composite precast walls and coupled 
shear walls on a pocket calculator. The evaluation of Eq. (15b) is 
not too tedious: for a > 3 tanh a 1, and the higher order terms soon 
become insignificant for increasing a. The curves in Fig. 6 have been 
dashed for a < 1 to indicate that at least seven digit accuracy is 
needed (small differences of large numbers); but this range is scarcely 
of practical importance. 

As the square of the ratio of the coupled and uncoupled fundamen-
tal periods, the K5-factor defines the range within which the apparent 
fundamental period may change when the vertical connections or the 
coupling beams become inelastic. While these bounds are of value, it 
is necessary to have a more complete understanding of the potential 
inelastic response of composite walls for aseismic design. 

INELASTIC BEHAVIOR OF COMPOSITE PRECAST PANEL WALLS 

Design Concepts  

Generally speaking, the performance of a structure under severe 
earthquake excitation depends to a great extent on the inelastic hyste-
retic behavior of its weakest elements, their structural function and 
on the nature of the overall yield mechanism associated with their 
inelastic behavior. Favorable performance may be expected, if the 
elements exhibit stable hysteretic behavior and if the primary yield 
mechanism is confined by elements that are still elastic. The benefi-
cial effects of hysteretic damping may then combine with the positive, 
or override the negative, effects of the longer apparent fundamental 
period associated with inelastic response. On the other hand, in 

(17) 
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strongly degrading elements the deterioration process is amplified by 
the tendency of inelastic deformations to aggregate in weak elements. 
If these elements are primary (i.e. gravity) load bearing elements 
and if the yield mechanism is not confined by other elastic elements, 
overall stability may be threatened. A major concern of aseismic 
design concepts is therefore the establishment of favorable hierachies 
of yield mechanisms (21). 

In panelized buildings the joints are likely to be the weakest 
elements. It has been suggested that global slippage between wall 
panels along horizontal joints could be used as both an energy dissi-
pating and force isolating mechanism (3,4). However, horizontal joints 
are primary (i.e. gravity) load bearing elements. Because the horizon-
tal connections often serve to join both load bearing wall panels and 
the floor planks, their mechanical behavior is rather complex and 
also sensitive to the floor behavior. Moreover global slippage along 
a horizontal joint represents an unconfined yield mechanism for the 
configurations under investigation. Thus it seems very difficult to 
design horizontal joints for controlled inelastic behavior without 
threatening the overall stability of the wall. Earlier studies on the 
inelastic behavior of horizontal joints (3) indicate that global slip 
is only likely for very low values of shear friction coefficient and/or 
normal stress. It was concluded that the change in response due to 
inelastic action was mainly associated with the elongated apparent 
fundamental period and that the contribution of energy dissipation was 
minor. To sum up, it is felt that horizontal joints are questionable 
as primary energy dissipating elements and should, on the contrary, be 
protected from inelastic action as long as possible to ensure their 
primary function as load bearing elements. 

With respect to vertical joints the situation is in many ways just 
the opposite. Vertical joints do not in general, serve a primary, gra-
vity load bearing function. Yielding of a vertical joint is confined 
as long as the walls have not yet reached their ultimate strength. A 
poor vertical joint in one story has little effect on the overall beha-
vior of the structure. Only the behavior of the vertical joint over 
the entire building height is important. The structural configurations 
of vertical joints are rather simple. Because only relatively little 
stiffness is needed to ensure nearly monolithic behavior under service 
level loads, mechanical connectors can be used as is usually the case 
in panelized systems found in both the United States and Canada. Such 
mechanical connectors seem particularly suited to a design for controlled 
inelastic behavior. The use of vertical joints as energy dissipating 
elements has also been suggested by Paulay (21) and Pollner (22). It 
is thus felt that the primary inelastic action in precast concrete panel 
buildings with horizontal and vertical joints should be confined to ver-
tical joints. 

For frames similar reasoning has led to the strong column, weak 
girder design philosophy. It is now also generally accepted that coupled 
shear walls are very efficient earthquake resistant structures, if the 
primary inelastic action is confined to the coupling beams and if the 
latter are properly designed to avoid premature shear degradation and 
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failure (20,21,23). Such a coupled shear wall system may be viewed as 
an extreme case of a strong column, weak girder design. 

t 

1 

In this section the vertical joint characteristics, strength, stiff-
ness and hysteretic behavior are discussed in the light of the strong 
horizontal joint, weak vertical joint design concept. 

Strength--The selection of the strength or yield level of the verti-
cal joint determines: 

• the degree of energy dissipation while the walls are 
still elastic 

• the degree of overall softening of the structure 

• the degree of protection of the walls and horizontal 
joints from primary inelastic action 

• the degree of protection of the joint itself from 
degradation 

Fig. 9 shows a conceptual single-degree-of-freedom model in terms of a 
base shear versus top deflection relationship. If the relative coupling 
stiffness a is low, the connection shear distribution is relatively even 
(see Fig. 5a) and yielding will start more or less simultaneously through-
out the connection. If a is high, the overall stiffness does not decre-
ase significantly until the connection is yielding nearly over its entire 
length (23). Thus the load-deflection curve can be reasonably approxi-
mated by two straight lines in the elastic range of the walls (Fig. 9b). 
Line AB corresponds to the elastic response, while along line BC the 
vertical connection is yielding. At point C the center wall becomes 
inelastic, a plastic hinge forms at the base and the ultimate strength 
is reached. For simplicity the last part of the load-deflection curve 
is also represented by a straight line CG. The slopes K and pK of the 
load-deflection curve are proportional to the square of the coupled and 
uncoupled frequencies, respectively, hence p = K5, where K5 is given 
by Eq. (15b). 

A strong horizontal, weak vertical connection design implies that 
the structure exhibits considerable energy dissipation before the walls 
reach their ultimate strength. For very high connection yield levels 
(e.g. line ADE) the energy dissipated in the elastic range of the walls 
tends to zero. Similarly, for very low yield levels (e.g. line AFG) the 
effect of hysteretic damping in the vertical connection becomes negligi-
ble for response amplitudes approaching the elastic limit of the walls. 

In view of the above reasoning a promising design concept for pane-
lized buidlings may be a strong horizontal joint, weak vertical joint 
design philosophy. If such a concept holds, the design could proceed 
along similar lines as for coupled shear walls. Proper selection of 
strength and stiffness of the vertical joints and ensuring their abili-
ty to sustain continuing inelastic excursions without significant degra-
dation are then of primary importance. 

Discussion of Vertical Joint Mechanical Properties  

i 
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Clearly, from the point of view of energy dissipation, the yield streng-
th has to be chosen at an intermediate level (e.g. line ABC) in such a 
way that the maximum possible value of hysteretic damping in the verti-
cal joint is reached slightly before the elastic limit of the walls. 

To illustrate this, Fig. 9c shows the hysteresis loop of the single-
degree-of-freedom model for a steady state forced vibration with ampli-
tude w < w < wu. For the time being, the vertical connection is assu-
med to

Y  
have a stable, elastoplastic hysteretic behavior. Degradation is 

treated later. The model assumes also that the connection yield cycles 
are governed by the fundamental mode of the structure. At least for 
relatively low a-values this is confirmed by the computer studies pre-
sented later in the paper. The equivalent viscous damping of the equi-
valent linear elastic model with stiffness Ke  (Fig. 9c) is given by 

2 11-1  
P= e - 7 p  2 

u+
1-p

p wy 

where ;e  is the ratio of critical damping and the viscous and hysteretic 
energies dissipated in one cycle have been matched at the fundamental 
frequency. The equivalent damping ratio is zero for T1 = 1 and 1.1 = 
and has for p # 1 a maximum at 

_1 

11(;
e 
 = max) = 1 + (p)2 (20) 

Hence, if the connection yield level is chosen such that w = 1_1( e = max)w 
is slightly smaller than w , the hysteretic damping expressed as equiva-
lent viscous damping woulduincrease with increasing amplitude of response 
and reach its maximum slightly before the walls become inelastic. For 
the structural configurations of Fig. 3 the y-parameter (Eq. (2c)) ranges 
roughly from y = 1/2 to y = 3/4. Thus reasonable values for p = K5 may 
range from 0.25 to 0.64 and, hence, for 11( e  = max)from 2.25 to 3.0. 

Assuming a triangular force distribution, the model yield displace-
ment wy  represents, with reasonable accuracy (± 12% for a = 2 to 16), 
the top deflection, at which the mean connection shear flow of the 
linear elastic structure reaches the yield strength. Thus the connec-
tion yield level suggested by the above a values is 100/P = 35 to 45% 
of the mean shear flow in the linear elastic structure experiencing a 
top deflection w wu. Alternatively the yield level may be expressed 
in terms of the actual load level corresponding to wu  (see line EG in 
Fig. 9b). It corresponds to 100/(1Ke/K) = 55 to 65% of the mean shear 
flow in the linear elastic structure under a lateral load initiating 
inelastic behavior of the walls. 

Clearly, the above reasoning intends only to indicate trends. The 
optimum value of the vertical connection yield level depends on the 
possibly conflicting effects of hysteretic damping and of the increased 
apparent fundamental period and must be established by computer studies 
with actual earthquake records. The last of the four points mentioned 
at the beginning of the section aims at mechanical connection devices 
as commonly used in American systems. To ensure stable hysteretic 

(19) 
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behavior such connectors should be designed to yield in the connector 
itself and the yield strength of an individual connector should be low 
enough to avoid degradation of the concrete embeddment. 

Stiffness--When discussing the selection of the vertical joint 
stiffness, two distinct regions have to be distinguished: the lowct 
value or sensitive range and the high a value or insensitive range. 
In the sensitive range the joint stiffness strongly influences the 
overall stiffness, the fundamental period and the amount of stiffness 
change pK (Fig. 9b) when the connection starts yielding. 

It may often be desirable to achieve nearly monolithic behavior 
for service level loads. The relative joint stiffness a will then be 
chosen at least at the beginning of the insensitive range where the 
overall stiffness and even more the fundamental period are nearly insen-
sitive to the connection stiffness. From the point of view of aseismic 
design such a choice has the advantage that nonstructural coupling stiff-
ness not accounted for has no influence on the overall response (however 
nonstructural strength has!). An increase of a over the threshold of 
the insensitive range increases the connection ductility ratios and 
changes the connection shear distribution to a more uneven shape approa-
ching that of beam theory (Fig. 5a). In panelized buildings there is a 
desire to keep details constant over the height of the buildings. For 
high a values it may therefore become difficult to design connections 
to remain nominally in the elastic range at service level on the one 
hand and to adopt the weak vertical connection concept on the other. 

At first glance it seems also reasonable to provide the vertical 
joint with excessive stiffness to allow for possible stiffness degrada-
tion without entering the sensitive range. This idea is discussed in 
the next paragraph. 

Hysteretic Behavior-- 

The fundamental periods of many panelized buildings are often in a 
range where softening of the structure means not only larger deforma-
tions but also increased seismic forces. In such situations the strong 
horizontal, weak vertical joint concept seems only applicable, if the 
connection does not prematurely fail in a brittle manner and if the 
relative coupling stiffness does not degrade to the sensitive range at 
least for excitation levels up to the elastic limit of the walls. To 
indicate trends, again some rough estimate is needed. 

Proceeding along the lines of a paper by Paulay (11), the connection 
deformations can be readily estimated as soon as the connection is yield-
ing nearly over its entire length. However they should be expressed in 
terms of the top deflection rather than the inertia load to relate them 
to the hysteretic damping characteristics as previously discussed. As 
shown in Fig. 10, the total connection deformation A may be comprehended 
as the superposition of the deformations due to the inertia forces p and 
the connection yield forces qy  acting individually on the uncoupled, but 
equally deflecting walls. From simple beam theory follows 
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= (w + wo) wo '12)
(21) 

where (w + w
o
)4) and w ct. are the deflected shapes due to the inertia 

o forces and tne connection yield forces, respectively, w is the total 
resulting top deflection and primes denote derivatives with respect 
to the dimensionless coordinate E. The parameter y accounting for the 
axial deformations of the walls is defined by Eq. (2c) and c is the 
distance between the centers of gravity of the walls adjoining the con- 
nection. The terms c', w in Eq. (21) are given by 

I o 0 

5  
qb
I 
= —
11 

(3 - 4T3 + C4) (22) 

"3 

(1)0 = (1  - T2)
(23) 

= 1 - x/H = 1 - E 

1y
cH3 

w (24) 
o 3 EI

0  

where a triangular intertia force distribution has been assumed. By 
introducing the yield displacement 

w
y  = wo 1-p

(25) 

of the conceptual single-degree-of-freedom model shown in Fig. 9, the 
connection ductility ratio, Pc  = A/Ay, can be related to the ratio 
P = w/wy  used in the expression Eq. (19) for the equivalent viscous 
damping ratio. 

Pc - - ci4y -I- 1) - (1)1  

A wc ww 

Y y y o I o
(26) 

But with Eqs. (2) and (24) the terms A = q 
Y
/k and w

o 
are related by 

w
o

= 
1,H 1 a2  H (27) 

= 13   
y 

With Eqs. (25), (26), (27) the connection ductility ratio is finally 
given by 

Pc 3 = 1-p P  + 1)14I  - (P t ] (28) 

where p = K 
5
(a,y), P = w/w 
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This approximate expression holds as long as p > 1 over nearly the 
entire connection length. This is the case for p > 1.1 to 1.5 depend-
int on a and y. Note that the relation between pc  and p is completely 
defined by the shear medium parameters a and y. It should also be 
noted that all definitions and equations hold equally for two and 
symmetric three-wall problems, if in the latter case k, q and q denote 
the sum of the stiffness, strength and shear flow of the two connections. 

1 
overall stiffness of the structure becomes strongly affected, can be 
avoided for p-values indicating significant hysteretic damping. Fig. 11 
shows a commonly used, stiffness degrading model. Also included in  

Fig. 11 is the definition of the ductility ratio and the cyclic ducti- i 

lity ratio (23). 

_ ! 
If, for simplicity, it is assumed that p

+ 
= p

c 
= p

c
, then the cyclic 

c  
ductility ratio is given by 1 

171
c 
 = 2p

c 
 - 1 (29)  

and for the degraded connection stiffness follows  

kdegr. = 
15--

1 
(30)  

171c  t 

The relative coupling stiffness a is proportional to the square root of 1 
1 

the connection stiffness and, hence, for the degraded relative coupling 1 
stiffness follows with Eqs. (28), (29) and (30) 

a
degr. 

= 
1/2, 

P
1 

c 

Fig. 11 shows the results of the evaluation of Eqs. (28) and (31) for 
two values of p indicated in the discussion on connection strength, two 
estimated bounds to y for panelized buildings and two values of a :a = 4 
corresponds to the threshold of the insensitive range and a = 16 corre-
sponds to nearly monolithic behavior. 

Fig. 11 indicates a slightly improved performance for high a 
values. However the difference is essentially due to the fact that, 
for a given yield level and p, an increase of a decreases wy  and, 
hence, w = pwy. Moreover the very high ductility ratios pc  associated 
with high a values seem rather theoretical. Thus providing the 

t 

Eq. (28) shows that the connection ductility ratio is strongly 
dependent on the relative coupling stiffness and consequently also on 
the connection stiffness k. The total deformation, Eq. (21), however, 
is naturally independent of k. For a given connection yield strength  
the increase of the ductility ratio with a is due to the decrease of  
the yield deformations Ay and w . 

It is now possible to return to the original question, if degrada-
tion of the connection stiffness into the sensitive range, where the 

a (31)  
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connection with excessive stiffness appears questionable. 

• 

Comparison of the results with Fig. 6 shows that a structure, 
whose hysteretic joint characteristics correspond approximately to 
those of Fig. 11, will always degrade into the sensitive coupling stiff-
ness range for values of p as low as 2. If softening means lower 
seismic forces, this may be an advantage. However panelized buildings 
are often in period ranges where softening is associated with increased 
seismic forces. It is questionable if the effect of hysteretic damping 
can compensate for the softening and caution seems appropriate with a 
deliberate weak joint design. On the other hand the vertical joint 
seems ideally suited as an energy dissipating mechanism in panelized 
buildings. The dilemma points to the urgent need for the development 
of vertical joints with stable hysteretic behavior. 

Finally it must also be recognized that, when softening of the 
structure will lead to higher seismic forces, any noticeable coupling 
effect is of value. As long as a vertical connection retains any resi-
dual stiffness and strength, it can contribute to improved seismic 
behavior relative to a simple, noncomposite wall. Thus prevention of 
a premature brittle failure, such as a brittle failure of the embedd-
ment of a connector, is of primary importance. 

Computer Studies  

To illustrate the trends discussed above results from several 
computer studies are presented. 

In a first study (24) the inelastic seismic response of a U-shaped 
composite wall as shown in Fig. 1 and 3c was studied. Dimensions and 
contributing masses were derived from a ten story building similar to 
that shown in Fig. 1. The walls were modelled by finite elements and 
crack opening in the horizontal joints of the web wall was included. 
However it was assumed that the connection strength was insufficient 
to create tension in the flange wall and consequently the flange wall 
was assumed to remain elastic and condensed into a line stiffness. 
The vertical connection consisted of two mechanical connectors per 
story. A stiffness and strength degrading connector model (Fig. 12) 
was adopted. The connector characteristics were selected to roughly 
match reported test results (25). Viscous damping was assumed to be 
5% in the fundamental mode. The shear medium theory parameters were 
y 0.5, a z. 4, K5 0.6. The fundamental periods of the composite 
and isolated web wall were roughly 0.4 and 0.5 seconds, respectively. 

The structure was subjected to the first seven seconds of an 
artificial earthquake, with 1.0g peak acceleration, created to match 
the Newmark-Blume-Kapur response spectrum at 2% damping (Fig. 13). 
Note that due to the rather high frequency content of the earthquake 
the isolated wall experiences smaller seismic forces than the composite 
wall. 

Fig. 14 shows the envelopes of maximum response for the following 
four cases: linear elastic composite wall (linear elastic); nonlinear 
composite wall with web wall horizontal joint opening and connector 
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yield level at 6000 kg and 4000 kg (nonlinear 6000 and nonlinear 4000, 
respectively); isolated web wall with horizontal joint opening (isola-
ted). 

As expected from the response spectrum, the linear elastic compo-
site wall sustains the largest seismic forces. For decreasing connector 
yield levels the combined effects of hysteretic damping and of the 
softening of the structure result in decreased force levels approaching 
those of the isolated wall. It should be noted however, that the axial 
couple is reduced too, thus the base moment to be sustained by the 
web wall itself was approximately the same for the linear elastic, 
nonlinear 4000 and isolated case. 

The maximum deflection envelopes are particularly interesting, 
because the effect of hysteretic damping in the vertical connection 
eventually overrides the conflicting effect of softening. In the 
nonlinear 6000 case the hysteretic damping in the vertical connection 
approximately compensates the effect of softening due to connector 
yielding and horizontal joint opening. A further decrease of the 
connector yield level to 4000 kg increases the hysteretic damping 
enough to result in the smallest maximum deflections. 

For the nonlinear 4000 case the top deflection time history is 
compared in Fig. 15 with the distortion time history of a connector 
at midheight typical for all connectors in the upper two thirds of the 
structure. The comparison shows that the connector yield excursions 
are governed by the fundamental mode. 

Fig. 16 shows the hysteresis loops of 
Note the tremendous stiffness degradation. 
excursion corresponding to the maximum top 
stiffness was roughly twelve times smaller 

the same typical connector. 
In the last large yield 
deflection, the degraded 
than the initial stiffness. 

Thus the upper half to two thirds of the vertical connection would have 
a relative coupling stiffness a in the range of 1.2, would the walls 
behave elastically. It appears therefore questionable, if under conti-
nued shaking the hysteretic damping could still compensate for the loss 
of stiffness in the structure. The maximum top deflection of the non-
linear 4000 case corresponds to p = 2.0, where this value has again 
been calculated on the basis of the linear elastic wall properties. 
It is interesting to note that the above degraded coupling stiffness 
agrees well with the estimated values of Fig. 11 although the web wall 
behaved nonlinearly. 

The second study (26) investigated the coupling of coplanar walls 
through floors that were assumed to be cast in place. Because the 
values cc, y and K5  characterizing the structure are near or within 
the range of precast composite walls, the results are equally applica-
ble to the coupling effects being discussed. Dimension and masses were 
again derived from a ten story building similar to that of Fig. 1. 
After detecting no significant differencies between a finite element 
and a wide column frame analogy approach, the latter was used for the 
inelastic studies. The walls were assumed to remain in the elastic 
range and inelastic behavior was confined to the equivalent coupling 
beams. Elastoplastic hysteretic behavior was assumed. The shear medium 
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parameters were y 0.8, a 2.6, K5 0.4. The fundamental periods 
of the coupled and isolated walls were 0.308 and 0.475 sec, respectively. 
The structure was subjected to the first six seconds of the NS component 
of the May 18, 1940 El Centro earthquake scaled to a peak acceleration 
of 0.25g. The response spectrum (Fig. 17) shows that, contrary to the 
previous study, the uncoupled walls have to sustain larger seismic 
forces than the coupled walls. 

Fig. 18 presents the envelopes of maximum response for the linear 
elastic coupled and uncoupled walls and for four cases of inelastic 
coupled walls with continously reduced coupling yield level. It is 
significant to note that the effect of hysteretic damping overrides 
completely the conflicting effect of the softening structure. For 
decreasing coupling yield levels the maximum deflections, overturning 
moments and shears decrease instead of approaching the response of 
the uncoupled walls. Even though the maximum axial couple decreases 
significantly (Fig. 18c), the maximum base wall moment still decreases 
(Fig. 18e). 

Note that for the lowest coupling yield level the maximum deflec-
tions and the maximum wall base moment start to increase again (Fig.18f 
and e). Hence the optimum yield level lies between 15% and 30% of the 
maximum elastic coupling force. Alternatively expressed, the optimum 
yield level lies between 27% and 51% of the mean coupling beam moment 
of the linear elastic response scaled to the same maximum top deflec-
tion as for the inelastic response; or it lies between 43% and 75% of 
the mean coupling beam moment of the linear elastic response scaled 
to the same base moment as for the inelastic response. These values 
confirm the trends indicated by the conceptual model. 

The coupling beam rotational ductilities (Fig. 18g) reflect the 
low a value. They increase with decreasing yield level and the rate 
of increase grows when the deflections start to increase. Note, 
however, that the total coupling element deformations do not increase 
until the deflections increase. 

The results indicate that the walls and horizontal joints of pane-
lized buildings can efficiently be protected with very low yield levels 
of the vertical connection provided that the connection can be designed 
to exhibit stable, elastoplastic hysteretic behavior. For strongly 
degrading joint characteristics and period ranges where softening 
results in increased deformations and forces a weak vertical joint 
design becomes questionable. 

To illustate this, preliminary results from a study now underway 
are presented. This study investigates the seismic response of a ten-
story I-shaped composite wall (Fig. 3d). The aim is to extend the 
first study to other connector characteristics and earthquakes. 

Dimensions and contributing masses are similar to the first study. 
A wide column frame analogy is used and the walls are assumed to be in 
the elastic range. The shear medium theory parameter are Y = .68, 
a = 4, K5  = 0.52. The fundamental periods of the coupled and isolated 
wall are 0.39 and 0.56 sec, respectively. Viscous damping is 5% in 
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the fundamental mode. The structure was subjected to 15 seconds of the 
El Centro earthquake with a peak acceleration of 0.2g. Fig. 19 shows the 
hysteretic characteristics of two of the connector models under investi-
gation: an elastoplastic and an extremely degrading model with very 
low energy dissipation. 

Fig. 20 shows the maximum response values as ratios of the linear 
elastic response. While the response of the elastoplastic model is 
again significantly lower, the response values for the degrading model 
are always higher than for the linear elastic model. The time histories 
of the axial couple for both models (Fig. 21) speak for themselves. It 
should be noted, however, that generally coupling at even the slightest 
stiffness and strength levels is to be preferred to the uncoupled situa-
tion. 

CONCLUSIONS  

This paper has examined the role of the vertical connection in the 
seismic response of composite walls used in large panel precast concrete 
buildings. On the basis of this examination a strong horizontal joint, 
weak vertical joint aseismic design philosophy has been proposed. 

The shear medium theory has been briefly reviewed as it applies 
to the coupling phenomenon in precast walls. This theory was extended 
to provide a simple explicit expression for the fundamental period of 
composite precast concrete walls and coupled shear walls. This solu-
tion is based on approximate energy methods, is suited for electronic 
calculator use and agrees with numerical solutions of the exact eigen- 
value problem. 1 

With the linear elastic characteristics of composite walls as a 
basis for discussion, the effect of connection strength, stiffness and 
cyclic degradation on inelastic seismic behavior were explored. This 
discussion, along with the proposed design philosophy, was then illu-
strated with the presentation of a series of computer studies. It was 
concluded that if the vertical connections exhibit a stable, elasto-
plastic behavior, the walls and the vulnerable horizontal connections 
can be efficiently protected by deliberately designing weak vertical 
joints. These preliminary conclusions clearly require further computer 
studies to investigate, in more detail, less favorable connection chara-
cteristics and other building configurations. In addition, the lower 
bound fundamental periods for the applicability of this design concept 
must be established, since the effect of damping decreases with decrea-
sing periods. 

While favorable behavior is to be expected for vertical connections 
that exhibit stable elasto-plastic characteristics this is not true for 
all vertical connections. For fundamental periods for which softening 
means larger deformations and increased seismic forces, stiffness and 
strength degradation and shear pinching of the hysteresis loops can 
result in a less favorable overall response for the inelastic system 
than for the linear elastic system. However, potential responses to 
this situation, the design of vertical connections that are strong 
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enough to remain linear elastic or the use of non-composite (simple) 
walls, leads to structures whose weakest element is probably the hori-
zontal connection. Thus the designer is forced to make a decision as 
to whether the primary inelastic action is to be in the vertical 
connection or in the more vulnerable horizontal connection endangering 
the structure's overall stability. 

It would thus seem that there are distinct advantages to the use 
of a strong horizontal connection, weak vertical connection design 
philosophy. Such a design philosophy, as previously stated, requires 
vertical joints that exhibit stable hysteretic behavior that is as 
close to elastoplastic as possible. Unfortunately the very limited 
experimental data on the cyclic behavior of both wet and dry vertical 
connections indicate that they may have trouble meeting such criteria. 
It is however possible to develop vertical connectors with more favor-
able characteristics applicable to the suggested design philosophy. 
One such attempt has been the lock-joint suggested by Pollner (22). 
This connection while exhibiting reasonably stable behavior retains 
the pinched hysteretic behavior typical of shear friction mechanisms. 
A more promising approach is proposed by Pall, et al. (27) in which 
coulomb friction is developed in a limited slip bolt connection. Here 
the basic concept is to concentrate the inelastic action in the steel 
connector thus protecting concrete around the embeddment from degrada-
tion. Another approach that may provide acceptable hysteretic beha-
vior is the use of horizontal post-tensioning across the purposely 
smoothed surfaces of a vertical connection. 

The concept of a strong horizontal joint, weak vertical joint for 
the aseismic design of large-panel precast concrete structures seems 
quite promising. It appears possible to control the seismic response 
of a panelized structure in such a manner as to increase damping and 
limit forces induced in the precast walls. However, the further develop-
ment of such a concept requires both further analytical and experimental 
studies. It is critical that the demands that may be placed on a 'weak' 
vertical connection be well understood and that vertical connections be 
developed that can meet these demands. 
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Figure 6 Fundamental Period of Composite Walls 
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Figure 19 Connector Models 
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